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On the Dimension of Bivariate Spline Spaces
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We consider spaces of piecewise polynomials of degree n and smoothness k < n,
defined over a rectilinear partition of a simply connected domain of [R2. We prove
that the dimension of the space agrees with Schumaker's lower bound if
11;' k + 21 (k + 1)/(11-1 n- 2 and 11;' 2, where 11 depends on the structure of the
partition. t, 199" Academic Press. Inc.

1. INTRODUCTION

Let Q c iR(2 be a simply connected domain and L1 = {Q;, i = 1, ..., OJ} a
partition of Q. Here and throughout, we shall assume L1 a rectilinear parti­
tion of Q, i.e., for each i, ()Q i is homeomorphic to a circle and oQin Q is
a piecewise linear curve.

We are interested in the space of bivariate splines of degree nand
smoothness k, n > k ~ 0, associated with the given partition

where IP 11 is the (n + 1)(n + 2)/2 dimensional linear space of polynomials of
total degree n.

In recent years there has been considerable work on identifying the
dimension of the spline spaces S~(Q, L1) ([13, 14, 6, 2] and references
therein).

For general values of nand k for arbitrary partitions both lower and
upper bounds on the dimension are known [10, 14]. If L1 is a triangulation,
dimension formulae have been established in the cases n ~ 3k + 2 [8-1OJ,
n = 4, k = 1 [1], n = 3k + 1 for non-degenerate triangulations [2].

With regard to partitions which are not necessarily triangulations, for­
mulae for the dimensions have been given for quasi-cross-cut partitions [5]
and for general rectilinear partitions if n ::::; k + (k + 1)/D, where D + 1 is the
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maximum number of edges with different slopes emanating from an interior
vertex J [12].

The spaces S~(,Q, J) with n "large enough with respect to k and J" are
the most interesting both for their approximation properties and for
containing non-trivial elements with compact support [6]. Even for these
spaces several results are known when J is a triangulation [9, 3J, while
there are still several unsolved problems if J is a general rectilinear parti­
tion. In this case also the dimension of the space presents a more subtle
geometric dependence [7].

In this paper we investigate the dimension problem for the spline space
defined over general rectilinear partitions. In particular we present new
bounds for the dimension and we prove that its value agrees with the lower
bound given in [14J if J is a generalization of a quasi-cross-cut partition
[5J and n is "large enough" with respect to k and to the number of
cross-cuts and rays traversing the interior vertices of J.

To establish these results we shall consider the usual cartesian coor­
dinates, in fact the barycentric coordinates and Bezier-Bernstein form for
multivariate polynomials are not useful if the cells of J are not necessarily
triangles.

2. MAIN RESULTS

We introduce some notation. Given the partition J the straightline
segments making up 8,Qin 8,Qj' i #- j, i, j = 1, ..., w, shall be called edges,
and the points where the edges join each other or meet 8,Q shall be called
vertices (note that, from the definition, here we consider interior edges
only). Let Pi= (Xi' Yi), i= 1, ..., V, be the vertics of J and Pi'
i= 1, ..., v < V, the interior vertices. For i= 1, ..., v,

Ii = {j : Pj is adjacent to Pi' 1~j ~ V},
lis = oriented edge joining Pi to P"

Bi = number of edges of Ll emanating from Pi'

ei = number of edges of J emanating from Pi with different
slopes,

E = number of edges of Ll,
N~ = number of cross-cuts (i.e., line segments with both endpoints

on 8,Q) crossing Pi'

F i = number of rays (i.e., line segments joining an interior vertex
to 8,Q) crossing Pi'

l1i = N~ +P,
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I] =min{1Ji, i= 1, ..., v},

__ {r(k+ l)/(1Ji- 1)l if 1Ji',;32,
J i + (fJ otherwise,

Ed = number of edges joining two interior vertices,
E cd = number of edges joining two interior vertices, overlying a

cross-cut or a ray,
jd ={U,s)EN 2

, max(1Ji,1Js)',;32, l~i<s~p:lis does not overlie
a cross-cut or a ray},

f3 =(n-k)(n-k+1)!,
IX =(n+1)(n+2H,
¢J =(k+l)(k+2H,

where rx l denotes the smallest integer greater or equal to x.
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DEFINITION 2.1. L1 is called a generalized quasi-crass-cut partition
provided that 11 ',;3 2.

We shall prove the following results:

THEOREM 2.1. Let L1 be a partition of a simply connected domain Q c [R2,

then

dim S~(Q, .1) ~IX + f3(E + Ed - Ecd )-}' - L !liS' (2.1)
(i.S)E [d

where
n-k t' n-k t,.

)'= L L min(k+1+j,jeJ=v(a-¢J)- L I (k+l+j-jeJ.,.,
j=1 ;=1 j=1 i~1

f3 - !(J;+J, -n + k -1 )(Ji + Js - n +k- 2)+,

if J i , J s ~ n - k,

n;s= f3-Wi-1)8,
if 8 = min(J;, J s ) ~ n - k. max(J;, J,) > n - k,

0, if Ji, Js>n-k,

(x)+ =max(O, xl.

THEOREM 2.2. Let L1 be a generalized quasi-cross-cut partition
simply connected domain Q c [R2, if

f
k+ll

n ',;3 k - 2 + 2 fJ _ 1 I'
then

dim S~(Q, .1) = r:t. + fJE - y.

of a

(2.2)
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3. CONFORMALITY CONDITIONS

It is well known [4] that an element of S~(.Q, Ll) is determined by one
polynomial of total degree n and by 2£ polynomials, qij E IP' n _ k _ l' which
must satisfy the following conformality conditions [5]:

where

L [lij(x, y)]k+l qij (X, y)=O,
jEll

i= 1, ..., v, (3.1 )

(3.2)

lij(x, y)=lji(x, y)=aijx+bijy-(aijx;+bijy;)=O,

(aij)2 + (bij)2 > 0,

is the equation of the straight line containing the edge lij.
Conditions (3.1), (3.2) determine the dimension of S~(.Q, Ll). In order to

rewrite them in a more convenient form we consider the translation

and the differential operators

Do,i=I,

(3.3 )

j=2, ...,

where I denotes the identity operator.
From the Taylor expansion it immediately follows:

LEMMA 3.1. Given the translation (3.3), if q(x, y) E IP'd and

p(c;, 0-) = q(x(O, y(o-)),

then
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Let us consider the linear operator L i : [P>" _ k _ 1 ~ [P> fI - k _ I ,
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L i is an isomorphism in [P>n-k-l'

Considering at each interior vertex of L1 a translation as (3.3) and using
for simplicity the same symbols for the independent variables, condition
(3.1) becomes

L [aijx+bijyy+1Liqij(x, y)=O, i= 1, .." P,
jE I,

while (3.2) is unchanged. Let

n-k-l

Liqij(x, y) = Pij(x, y) = L p&")(x, y),
r=O

where p~) is the homogeneous component of Pij of degree t,

Denoting by L i- I the inverse operator of L i in [P> n _ k _ I' from (3.2)

L -1p (x ,,)= _L,-lp (x "j
i ij' J' - j ji '" , .l , ,

and

finally, observing that LiLj = LjLi (in fact the derivatives commute III

[P> n - k - I) we have

L [aijx + bij y]k+ I Pij(x, y) =0,
jE /,

4. THE LINEAR SYSTEM

1= 1, ... , v.

(3.4 )

(3.5)

System (3.4)-(3.5) involves 2Ef3 unknowns, but f3(E - Ed) of them,
associated with the edges emanating from boundary vertices, appear in
(3.4) only, so they are determined by the others explicitly. Then

dim S~(Q, L1) = IX +peE + Ed) - rank JlI, (4.1 )
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where ~#! is the matrix of the linear system

L [aijx+bijyJk+l Pij(x, y)=O,
jE Ii

i= 1, ..., v,

1~ i<j~ v.

(4.2)

(4.3 )

With a suitable arrangement of the equations and unknowns, recalling the
form of Pij(x, y), uK has the structure

[
M1 0 ... 0]

: M 2 :

J/= O· M'v ....
L

Each J.\tti, i = 1, ..., v, is the diagonal block matrix of the equations (4.2)
related to the vertex Pi and it captures the influence of the edges emanating
from this vertex. More precisely

where M~ is the (r + k + 1) by rS i matrix containing the equations (4.2)
involving P~- l)(X, y), j E Ii' To each couple of collinear edges crossing Pi
corresponds a couple of blocks of equal columns in M~ and [15J

rank M~ = min(k + 1+ r, reJ

In the following with the term columns of M~ associated to the edge lij we
will refer to the columns of M~ corresponding to the coefficients of
Pij-l)(X, y).

The matrix L contains equations (4.3), so it controls the interior vertices
interaction. In order to investigate its structure we consider the set

{yn -k -1, yn - k- 2X , •••, x n- k-1, ..., y, x, I}, (4.4 )

as a basis of IP n _ k - 1 •

If L i denotes the matrix of L; with respect to this basis, then L; is a lower
triangular block matrix

I J
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where B;,5 is the (s + 1 - r) by (s + 1) matrix representing the operator

1 < > ' ,_ .,s s ,s ~ t S - r,Dr,i' }, ...,x -)<J , ... ,X ).
r.

Then
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where each As is a matrix with f3 rows and it contains the equations (4.3)
for two polynomials Pin P'i associated with an edge joining two interior
vertices. More precisely, the only non-zero columns in As are those corre­
sponding to the columns of M i (M') related to PiAp,i): the first (n-k)
columns of L, are aligned with the (n-k) columns of M;'_k associated to
p;;-k-l)(X, y) and so on.

The following lemma holds:

LEMMA 4.1. Let t i, t,EN be such that 1~ti+tr~l1-k=d+ 1 and
Bi, = (B i IB,) the submatrix of (L iIL,), where

o

o
I

Bti+t,--l.d, B~r.d+ 1-[i,

and Br is defined analogously by interchanging i with r. Then, if
(Xi,yJ =1= (xn y,), Bi, has maximum rank, i.e.,

',+ t,.-- 1

rank B ir = L. (d + 1 - j).
j=O

Proof Let us consider the space iP'd X iP'd, the linear subspace of iP'd,

and the linear operator,

(
ti+t'-11 1 \

Bi,.(p, q)=?Jld+1-t,-t, ,L. ~Di.i(P)+~Di,rfq)),
1=0 .1 .J ,

where ell' denotes the projection over iP'~.



148 CARLA MANNI

Considering in each fP'd a basis as (4.4), Bir is the matrix of Bir .

For the sake of simplicity let us put (Xi' y;) = (0, 0) (so Dj,i =. 0, for all
j~ 1), t i ~ t r (in the general case the proof needs only some more tedious
calculations ).

Let us consider (p, q) E fP'~+ 1- I, X [lJ>~+ 1- I r , then

11 -1

p(X, y) = L p(d-j)(X, y),
j~O

tr-l

q(x, y) = L q(d-j)(X, y),
j~O

where pU), qU) are homogeneous polynomials of degree j.
We shall study the Kernel of B ir .

Denoting Dj,r by V, Bir(p, q)=O implies

p(d)=. _qed)

p(d-l)=. _D1q(d)_q(d-l)

(4.5)

Each leading principal submatrix of

1

[

(t,)!

(I, + t~-l)!

(t,-,( I)!],
(t,.)!

is non-singular (Lemma 4.2), then, noting that DjD i = D i + j, we are able to
rewrite the last tr relations of (4.5) as

O=.allDI;q(d) + ... +altrDI,-lr+lq(d-lr+l)

O=. 0 + a22Dt'q(d-l) + '"
0=.0+ ... + alrlrDliq(d-lr+ 1),

where aii=PO, i= 1, ..., t r .

(4.6 )
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If (X n J'r) ;i: (0, 0) then the relation
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determines (s + 1- t i ) coefficients of q!s); since t, + t r ";; d + 1, relations (4.6)
determine Q coefficients of q(d) ... q(d-Ir + 1). while the first t, relations of
(4.5) determine P coefficients of pfdl ... p(d -I, + 1 i. where

t,-1

Q= I (d+l-j-tJ,
i~O

Summarizing,

[[-1

P= L (d+ I--J).
i~O

~-1 /r-1 q+~-l

rank Bir = I (d+l-j)+ I (d+l-j-tJ= I (d+l-j). I
i=O i=O i-a

LEMMA 4.2. For each pEN, the matrix

1
h··=-----

1J U+j+p-l):'
i,j= 1, ..., 11,

is non-singular.

Proof Det H p = [p! .. , (p + n - I)!] -1 det Hp , where

H=p

1

p+l

1

(p+ 1)(p+2)

(p+1) .. ·(p+n)

1

p+2 p+n

1

(p+n)(p+n+ 1)

1

(p + n) ... (p + 2/1 - 1)

Let us denote by ar the rth row of Hp and let us consider the following
algorithm:

Algorithm 4.1.

O. Given a 1 •· ·a,,,

1. i = n, ..., 2

It.h=i-1, ...,1

L1. ai=ah-(i-h)a i
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By induction it IS easy to prove that, after step h = t, the algorithm
provides

1
aj = , ...,

(p + l)(p + 2) ... (p + t - l)(p + i)

1
(p + j) ... (p + t + j - 2)(p + i + j - 1)' ...,

1

(p + n) ... (p + n + t - 2)(p + n + i-I )
i=n, ..., 2.

Then, after step h = 1, aij = l/(p + i +j - 1), i.e., the algorithm, by linear
combination of rows, changes Hp into the Hilbert matrix, which is
non-singular. I

5. THE DIMENSIONS

It is well known [14], that a lower bound for the dimension of S:(Q, J)
is

dim S:(Q, J) ~ r:x + f3E - }'. (5.1 )

Theorem 2.1 gives an upper bound for the same quantity for general
rectilinear partitions. This upper bound agrees with (5.1) if J is a
generalized quasi-cross-cut partition and n is large enough, so it establishes
the dimension.

For proving Theorem 2.1 it is useful to introduce some additional nota­
tion. Given a ray (cross-cut) with endpoints P" Pr we will refer to it as the
ray (cross-cut) P,Pr • Let us consider the lexicographical arrangement in 1R2

(i.e., (Xi' yJ < (Xj, Yj), iff Xi<Xj' or xi=xj and Yi<Y;) and let the interior
vertices be ordered. For each edge lis emanating from an interior vertex let
us put (Fig. 1)

0,

1,

Pis= 2,
3,
4,

if Pi< Psand lis overlies a ray P,P" P, E Q, PI ~ Pi'
if Pi > Ps and lis overlies a cross-cut or a ray P,P"

P,EQ, PI~Pi'
if lis does not overlie a cross-cut or a ray,

if Pi > Ps and liS overlies a ray PIP" P, E Q, PI < Pi'
if Pi < Ps and lis overlies a cross-cut or a ray PIP"

P,EQ,P,>Pi, i=l, ...,v,s=l, ... , V.
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P-

P j PA

P3

PI

~
FIG. 1. P24=P3S=P49=O, PlS=P16=P21=P31=I, PJ4=P43=2, P42=3, P'2=P'3=

P27 =4.

Proof of Theorem 2.1. From (4.1) it is sufficient to prove that

ranL,ff;:': f3Ecd +}' + L ni5"

u.s, E [d

(5.2)

Let us construct a set !fi of columns of j{ according to the following steps
(i=1, ...,v):

(1) Select T (T=min(k+1+j,jeJ) independent columns in MJ
[15J,j= 1, ... , n-k, choosing at first all the possible columns associated to
the edges lis with Pis = 0, after the ones associated to the edges with Pis = 1
and so on until the amount T is reached.

(2) If Pis = 3,4 and Ps is an interior vertex, choose the f3 columns
associated to lis (j columns in each Mj, j = 1, ..., n - k).

(3) If {i, s)Eld (hence Pi' PsEQ), choose the j columns in M;,
j=h ..·,n-k, associated to liS and a set of Q, Q=j-(n-k+1-Ji<,
columns in MY, j = max(J" n - k + 2 - J i ), ... , n - k associated to lsi'

We call columns of type (i) those chosen at the step i, i= 1, 2, 3, of the
previous procedure.

Let .it be the submatrix of jl consisting of the columns of!fi and let MJ,
t i , t be respectively the submatrices of MJ, Li> L consisting of the columns
which are part of columns in !fi.

Let us compute the cardinality of!fi. We have

}' columns od type (1),

f3Eed columns of type (2),

L nis columns of type (3),
(i,s)Eld
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where
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n-k

nis = L j+
n-k

j~J, j~max(J"n-k+2-J,)

Since for every edge lis such that Pis = 3 (4) there exists one edge lin
emanating from P;, collinear to lis, with Pir = 0 (l), i = 1, ,.., v, in (fj there
are no columns of type (1) associated to the edges such that Pis= 3 (4). In
addition we observe that, because of the ordering chosen in (1), in MJ,
j"?3l;, i = 1, ..., v, there are no columns of type (1) associated to the edges
not overlying cross-cuts or rays (Pis = 2). Then the sets of columns (l), (2),
(3) are disjoint and the cardinality of (fj agrees with the right hand side
of (5.2).

We shall prove now that (fj consists of linearly independent columns
of .It.

Let us assume that a linear combination of the elements in (fj is equal to
zero: we shall prove that all the coefficients are zero.

Let us examine at first the columns associated to the edges such that
pis=2.

If j<l;, in M5, i= 1, ..., v, there are only columns of type (1) and (2).
Then, because of the ordering chosen in (1), the columns of type (1)
associated to the edges not overlying cross-cuts or rays still remain inde­
pendent on the other ones in MJ, j < J i . It follows that their coefficients in
the linear combination are zero, because of the structure of ~ii.

Let us consider now the columns of type (3) in (fj. Such columns are pre­
sent if there exist edges lis joining two interior vertices, not overlying a
cross-cut or a ray and such that min(Ji , J s ):( n - k. Let us examine in L
the columns related to any couple of these edges, lis and lsi, i.e., the
columns of Ls and L i . From the previous arguments it follows that among
these columns the only ones having non-zero coefficients in the linear com­
bination could be those which are part of columns of type (3) associated
to lis and lsi' Then we are dealing with the columns of matrix B"
ls=(n-k+l-JJ+ (see Lemma4.1) and with a subset of columns of
matrix B i , t i = (n -k+ 1- max(Js ' n -k + 2 -JJ)+. From Lemma 4.1 we
can choose these columns in such a way that they are linearly independent
because

(n -k+ I-J;)+ + (n -k+ 1- max(J" n - k+ 2 - J;))+ :( n -k.

This implies, recalling the structure of L, that all the columns of type (3)
in (fj have zero coefficients in the linear combination.

Summarizing, all the columns in ((; associated to edges not overlying a
cross-cut or a ray have zero coefficients in the linear combination.

Let us consider now the columns in ((; associated to the edges overlying
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cross-cuts or rays such that Pis = 1,4. This we do by starting from the edges
crossing P r .

In MJ', j = 1, ..., 11 - k, there are no columns of type (2) associated to the
edges with P"s = 4 because there are no interior vertices grater than P,.
Then, because of the ordering chosen in (1), if there exist in M:' columns
of type (l) associated to edges with Pvs = 1 they are independ~nt on the
other columns which can have non-zero coefficients in M;', j = 1, ... , n - k.
It follows that their coefficients in the linear combination are zero, because
of the structure of 012.

Let us consider now the {J columns in ((j associated to any edge itt. with
Piv = 4, if it exists. Since we have a zero linear combination in vii we have
a zero linear combination in L too, particularly in (t,.ILJ, Since Pr'; = 1
each column associated to Ivi has zero coefficient; then, as every L, is a
non-singular matrix, each column associated to liv must have coefficient
equal to zero in the linear combination, because of the structure oft.

Summarizing, all the columns in qj associated to the edges crossing P,.
such that PIS = 1, 4 have zero coefficients in the linear combination.

Examining one after the other the vertices Pi' i = v-I, ... , 1, we can
prove in the same way that all the columns in C(; associated to the edges
such that Prs = 1, 4 have zero coefficients in the linear combination.

Finally the only columns in C(j having non-zero coefficients in the linear
combination could be the ones associated to the edges overlying rays such
that Pis = 0,3. In order to prove that these ones have zero coefficients as
well, we can repeat the previous arguments considering at first the edges
crossing PI' and successively that ones crossing Pi' i = 2, ..., 11.

Briefly every column in C(j has zero coefficient in the considered linear
combination. I

As a consequence of the previous theorem we have:

Proof of Theorem 2.2. If A is a generalized quasi-cross-cut partition
then

while from (2.2), 11 is = {J, for each (i, s) E I d
. Hence from Theorem 2.1,

rank J/{ ~ fJEd + ]I, then from (4.1),

dimS~(Q,A)~cx+pE-i" (5.3)

The statement follows by comparing (5.3) and (5.1). I
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FIG 2. The Morgan Scott example. v=3, '1='1,=2, i=1,2,3, E=9, Ed =3,
dim S~(Q, Ll) =<1 + {JE -,' VIl;;' 3k.

6. REMARKS AND EXAMPLES

Remark 6.1. If L1 is a quasi-cross-cut partition then Id = 0, E d =E cd so
(2.1) agrees with (5.1) and it establishes the dimension of the space for each
n, k according to [5].

Remark 6.2. Theorem 2.2 holds in a little more general form. In fact
from its proof it is easy to see that (2.1) agrees with (5.1) provided that

or

These conditions can be substituted for (2.2).

Remark 6.3. For any generalized quasi-crass-cut partition Theorem 2.2
gives the dimension of S~(!l, Ll) for each n ~ 3k, particularly for S~(Q, L1).

We end with some examples.

EXAMPLE 6.1. See Fig. 2.

EXAMPLE 6.2 [11]. See Fig. 3.

FIG. 3. v=8, /1='1,=2, i= 1, ..., 8, dim S~(Q, Ll)=<1+{JE-)' 'V1l;;'3k.
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